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Abstract 

 

The motivation, design, implementation, and current status of a new set of software tools called PerfSuite 

that is targeted to performance analysis of user applications on Linux-based systems is described.  These 

tools emphasize ease of use/deployment and portability/reuse in implementation details as well as data 

representation and format.   After a year of public beta availability and production deployment on Linux 

clusters that rank among the largest-scale in the country, PerfSuite is gaining acceptance as a user-oriented 

and flexible software tool set that is as valuable on the desktop as it is on leading-edge terascale clusters. 

Introduction 

In the preface to his book, Tcl and the Tk Toolkit, John Ousterhout describes his motivations for developing 

the widely used Tcl scripting language as follows [1]: 

Tcl was born of frustration. In the early 1980s my students and I developed a number of 

interactive tools at the University of California at Berkeley, mostly for integrated circuit 

design, and we found ourselves spending a lot of time building bad command languages. 

Each tool needed to have a command language of some sort, but our main interest was in 

the tool rather than the command language. We spent as little time as possible on the 

command language and always ended up with a language that was weak and quirky. 

Furthermore, the command language for one tool was never quite right for the next tool, 

so we ended up building a new bad command language for each tool. This became 

increasingly frustrating. 

In the fall of 1987 it occurred to me that the solution was to build a reusable command 

language.  If a general-purpose scripting language could be built as a C library package, 

then perhaps it could be reused for many different purposes in many different 

applications… In the spring of 1988 I decided to implement such a language, and the 

result was Tcl. 

At the National Center for Supercomputing Applications (NCSA), as at many other research institutions in 

both the academic and corporate sectors, a similar situation arises in the context of performance analysis of 

software applications. A great deal of money is spent on acquiring, installing, and maintaining state-of-the-

art high-performance computing (HPC) systems with the intent of achieving the greatest possible 

performance for mission-critical applications. Yet at the same time, the process of systematically gathering, 

analyzing, storing, and sharing data that measures the realized performance of these applications continues 

to occur largely in an ad hoc fashion, sometimes with great difficulty in even acquiring the relevant data. 

Results of analyses are frequently discarded or forgotten after generating a “scaling” or “optimization” plot 

or two after sufficient confidence is gained that performance has reached a satisfactory level given the 

available hardware, supporting libraries, and compiler technology.  To paraphrase Ousterhout, application 

developers and performance analysts end up building a new bad infrastructure for acquisition and reuse of 

application performance data. It is not unusual to see everything built from scratch on an application-by-

application basis. 
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A further unfortunate consequence of this haphazard approach to application performance analysis is that a 

substantial proportion of discipline-specific computational scientists often do not know the actual 

performance characteristics of their production applications in daily use. Frequently, nothing more than 

basic timing information (CPU or wall-clock) is used to assess whether or not an application makes 

efficient use of computational resources.  While timing information represents the “bottom line” in terms of 

absolute performance, it offers little insight at the microarchitectural level into opportunities for 

performance improvement.  One often hears of the growing gap between peak and achieved performance of 

real-world applications on the high-performance processors of today—it may be equally true that there is a 

growing gap in awareness of the underlying causes for performance deficiencies that adversely affect 

overall productivity. 

This article describes an effort to help address this situation that has resulted in the design and creation of 

an infrastructure for application software performance analysis called PerfSuite.  This infrastructure has 

benefited greatly from the innovation of others as well as from advances made in the development of 

underlying standards and portable, open source software (OSS) foundations that can reduce the time 

required to assemble the necessary components into a working system from years to months.  In turn, end 

users of PerfSuite in many cases can achieve within minutes what might have previously taken days, 

weeks, or more to accomplish.  From the outset, PerfSuite has been designed with the end user uppermost 

in mind: the thesis has been that application developers and users should not have to be burdened with 

becoming experts in the details and intricacies of low-level libraries that enable access to performance data.  

Ideally, developers should be empowered to quickly and easily receive accurate answers to fundamental 

questions such as these: 

1. How well is an application performing?  

2. How and where might efforts be best directed to improve an application’s performance? 

 

PerfSuite has also been designed with a real-world perspective on the challenges often involved in software 

deployment on Linux systems today. Unfortunately, it is too often the case in the OSS community that, if 

an interested person sees potential in a particular software package, he or she soon discovers that the 

package has dependencies on several other independent packages, each in their own state of development 

and stability.  In the extreme case, a person who simply wants to use the software for the perceived benefits 

finds himself or herself becoming a virtual member of the software development team.  One could rightly 

argue that this is one of the primary reasons for the continuing success of the OSS community, however it 

also acts as a barrier to wider adoption by a broader audience.  In fact, assembling disparate components 

into a turnkey, quality-controlled, validated, and supported complete system that requires minimal 

intervention by the consumer is a key reason for the successful business model pursued by Linux 

distributors such as Red Hat, SuSE, and others.  While PerfSuite is, of course, very small in scope when 

compared to complete Linux distributions, it has been intentionally designed so that it has no dependencies 

on any of the supporting software it can use; this makes it possible to download, unpack, configure, and 

build a working version of PerfSuite that still can provide useful performance analysis data.  If desired, the 

capabilities can be enhanced through external software support, but this is not a requirement. 

Background and Motivation 

During the second half of the 1990s, the primary HPC systems available at NCSA were Power Challenge 

and Origin systems from Silicon Graphics, Inc.  In addition to being stable, innovative hardware platforms, 

these systems offered some of the most advanced performance analysis software available, with the most 

frequently used components being the IRIX perfex command and SpeedShop tool set [2,3].  These two 

components provide the developer and performance analyst with mechanisms to extract performance data 

from unmodified applications and present the data in ways that help to quickly evaluate the actual 

performance of the application using hardware-based metrics.  Independently and together, these provide 

substantial opportunities to learn of areas within an application that may be candidates for performance 

improvement. 

In 2001, NCSA initiated a shift away from traditional shared-memory supercomputers such as the Origin in 

favor of Linux clusters of commodity microprocessors with high-speed interconnects, suitable primarily for 
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MPI-based applications or high-throughput “scavenger” applications that benefit from the highest possible 

CPU cycle availability. Shifts of this nature represent a sea change for users who are accustomed to single-

source custom solutions as provided by HPC hardware vendors.  Not only are the hardware components of 

the system commodity items, but also performance analysis software support - largely from the open source 

community with substantial reliance on the GNU system of the Free Software Foundation [4] - is typically 

limited to the venerable profiler gprof, developed in the early 1980’s as part of the BSD UNIX effort [5]. 

NCSA’s initial production Linux cluster offerings consisted of two architecturally-distinct systems: a 500+ 

dual-processor compute node 1GHz Pentium III (Coppermine) system, and a 150+ dual-processor compute 

node 800 MHz Itanium (Merced) system.  Both clusters were configured with a high-speed Myrinet 

interconnect and ran then-current RedHat 7.x Linux distributions.  These clusters entered production and 

were made available to NCSA’s user community in 2001 and 2002, respectively.  

As a member of the technical staff within NCSA’s Scientific Computing Division with a focus on 

performance analysis, I was part of a center-wide effort to assist in the migration of user applications from 

the Origin supercomputers to the Linux clusters.  Especially useful in this effort was evaluation of the 

performance of user applications in addition to identification of potential for performance improvement 

where possible.  Unfortunately, an informal survey of the then-available supporting tools to assist in these 

tasks showed a relatively sparse set of offerings in comparison to those provided by IRIX.  Simultaneously, 

I was involved in a development project to prototype a graphical interface for exploratory data analysis 

(EDA) using hardware performance counter data gathered on the Origin using perfex.  The software 

resulting from this project was tied quite closely to the perfex-specific data format: one or more plain text 

output files listing raw counter values in addition to a pre-defined set of derived metrics that could be 

calculated from the event counts.  It was clear that without perfex or equivalent support on the incoming 

Linux systems, the EDA capabilities under investigation would be restricted to the IRIX environment 

unless equivalent functionality became available for the Linux platforms. These were the primary reasons 

that PerfSuite development began; specifics of the implementation are discussed in the next section. 

PerfSuite Building Blocks and Architecture 

PerfSuite's design and implementation benefits greatly from ongoing developments in a number of areas 

that help to address the overall goals of the project.  Specific requirements and related work that help to 

meet them include: 

Kernel Support for Performance Counter Access 

The IA-64 Linux kernel was designed from the outset to include support for performance 

monitoring capabilities that exploit the advanced capabilities of the Itanium performance 

monitoring unit (PMU).  The Perfmon subsystem, authored by Stéphane Eranian of Hewlett-

Packard Research, is responsible for driver implementation as well as a user-level library suitable 

for performance tool development [6].  For x86-based architectures, the Perfctr kernel patch, 

developed by Mikael Pettersson of Uppsala University, provides a performance counter driver that 

exposes similar capabilities to tools
1
 [7]. 

 

Portable, Standard Data Format and Supporting Software 

Historically, performance analysis software such as profilers defined their own internal (usually 

machine-specific) formats or simply presented the results of a performance analysis experiment 

directly to the standard output.  Primary reasons for this include the desire for fast access as well 

as conservative use of disk space.  Today's computing systems, however, offer extremely fast disk 

access as well as capacities that are commonly in the gigabyte range.  It is therefore much more 

feasible with these capabilities to take advantage of data formats that are more portable between 

machines.  During the past decade, the XML standard has emerged as the format of choice for 

                                                           
1
 Unlike Linux/IA-64, the standard x86 kernel does not yet contain official support for Perfctr -- a kernel 

patch and rebuild is required. This is probably the biggest barrier to the adoption and installation of 

performance software that relies on it, including PerfSuite. 
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truly portable, self-describing data and has gained rapid acceptance in nearly all fields that rely on 

computing support [8,9]. 

 

Portable, Extensible, Interpreted Programming Languages 

It was recognized at the outset that rapid development was key in being able to deliver the desired 

capabilities within a reasonable time and with a minimum of person-hours.  Further, it was 

apparent that many of the activities essential for manipulation and presentation of performance 

data do not require the speed offered by a compiled, system-level programming language such as 

C or C++.  Great strides have been made over the past fifteen years in scripting languages, with 

Perl, Python, and Tcl being the clear leaders and the choice among them largely a matter of 

personal preference. Efficient implementations coupled with increasingly faster processors make 

any of these languages a reasonable choice for implementing all but the most computationally 

demanding tasks. For access to features not directly supported by the language (such as interaction 

with performance counter drivers and user-level APIs), it is possible to extend the language 

through extensions written in a system programming language.  Additionally, each of these 

languages provides some degree of support either directly or through extensions, for easy access to 

and manipulation of XML documents. Therefore, PerfSuite relies heavily on implementation using 

a scripting language (Tcl) and a robust extension for XML support (tDOM) wherever possible 

[10,11,12]. 

 

Standard, Portable, Hardware Performance Event Definitions, API, and Implementation 

Hardware performance event counters are available on all major processors in common use today. 

However, there are substantial differences in the events available on each processor, even in 

different models within the same processor family.  Further, programmatic access to the events has 

historically involved very low-level APIs, much too low-level to be of use to the typical 

application developer.  One of the most important developments in the performance analysis 

community over the past several years has been an extended effort by the Innovative Computing 

Laboratory at the University of Tennessee-Knoxville that has resulted in a standard, cross-

platform API for performance counter access.  This API, known as the Performance Application 

Programming Interface (PAPI), is available for a number of current processors and operating 

systems (not just Linux) and is enjoying growing acceptance as a de facto standard for portable 

access to hardware performance counters [13]. 

 

Along with the definition and implementation of the API itself, the PAPI project also defines a set 

of "standard events deemed relevant and useful in tuning application performance".  The existence 

of these standard events relieves the application developer and performance analyst of the burden 

of sifting through a sometimes overwhelming number of processor-specific event names and 

reduces these to a single common and related event name that is uniform across processors.  For 

example, rather than having to know that total level 2 cache misses should be specified as 

“L2_LINES_IN” on Pentium 3, “L2_MISSES” on Itanium, and the sum of 

“SYS_DC_REFILLS_TOT” and “SYS_IC_REFILLS” on Athlon, the user need only specify 

“PAPI_L2_TCM” in their source code; the proper mapping is taken care of by the PAPI library.  It 

is, however, important to recognize that the standard events provided by PAPI may have different 

semantics on different processors -- for the most effective insight, the user is advised to research 

the vendor documentation describing the exact meaning of each event for the processor of interest.  

 

Another valuable feature of the PAPI library is support for performance counter multiplexing, 

based on the work of John May of Lawrence Livermore National Laboratory [14].  Multiplexing 

provides the ability to “timeslice” a larger number of performance events than would otherwise be 

possible to count simultaneously given a finite number of performance registers (two on Pentium 

III, four on Itanium).  As a statistical technique, multiplexing sacrifices accuracy by estimating the 

true event count over the course of the run, but in general produces quite satisfactory results 



PerfSuite: An Accessible, Open Source Performance Analysis Environment for Linux 

 

 

 

 

 

 

 

5

especially for runs of reasonable length (the IRIX kernel, which also provides counter 

multiplexing support, suffers from the same limitation).  

 

It is accurate to say that the existence of the PAPI library was the key item that enabled PerfSuite 

development to begin, as PAPI already supported the target platforms (Pentium III and Itanium) 

that were of immediate interest for use at NCSA. 

  

Following preliminary research and experimentation, it was determined that each of these building blocks 

were either already well established or were in a sufficiently stable form to be usable for development of a 

prototype by the time the initial work on PerfSuite began in mid-2002.  The earliest implementation 

consisted of a small library that contained two functions, callable from either C or Fortran.  This library, 

conditionally compiled according to the target CPU, took care of the details of initializing the PAPI library, 

configuring a set of pre-selected PAPI standard events, enabling multiplexing support, starting event 

counting, and finally stopping the performance monitoring and writing the results to standard output.   The 

library also featured several hard-coded ”derived metrics” that could be calculated from the collected event 

data (for example, floating point operations per second, cycles per instruction, and various other ratios). 

Although useful as a quick proof of concept, the library still fell short of what experience showed would be 

necessary to be interesting and useful to a broader audience.   In particular, it had the following 

shortcomings: 

• Modification of source code, recompilation, and relinking required 

• No control over event selection by the user 

• Limited accuracy, due to “always-on” counter multiplexing 

• No support for multithreaded applications 

• Output format that was not amenable to downstream manipulation by machine 

• No suspend/restart facility to allow monitoring of restricted portions of application 

• Performance analysis limited to aggregate event counting; no support for event-based profiling 

• Architectural features of the machine useful in calculation of derived metrics (for example, cache 

line size) were hard-coded into the library 

• Library dependencies on supporting software; in the case of x86-based machines, this implied a 

requirement for a patched Linux kernel before it could be used 

 

Despite these limitations, the library quickly proved to be useful by providing access to hardware-based 

performance data without requiring a substantial investment by the user.  Subsequent work continued to 

focus on a general-purpose library and API as the foundation, rather than working from the perspective of 

any particular tool as the ultimate goal. This design choice has proven to pay dividends in terms of reuse of 

the software for multiple needs.  

Another important consideration in the redesign following the prototype implementation was the selection 

of format and content, both input and output. Substantial prior experience in working with production 

applications and the user communities that develop and use them on both shared- and distributed-memory 

parallel systems made it clear that it was necessary to look past single-use scenarios for the performance 

data collection process. 
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Over the course of several months in late 2002 and early 2003, a more general-purpose library and tool 

infrastructure was designed and written.  This infrastructure, which remains in place in current versions of 

PerfSuite, is shown in Figure 1.  Shaded components in this figure correspond to optional external support. 

In the next section, each core component of PerfSuite is reviewed. 

Descriptions of Libraries and Tools 

In order to address the limitations of the initial prototype, to address the desire for flexibility/portability, 

and to remove dependencies on external software support, the original library interface to PAPI was split 

into two separate libraries, with one - libperfsuite - implementing base functionality that could operate 

regardless of the presence of external software and the other - libpshwpc - serving as a generic gateway to 

common features that could be provided by specific lower-level access to performance measurements. 

Along with this redesign, a very high-level and simple API specification was implemented.  This API has 

nothing inherently specific to a particular type of performance measurement and in spirit most closely 

reflects action-oriented tasks that a user might wish to initiate, such as “begin measurement at point A”, 

“suspend measurement at point B”, and “stop measurement at point C”.  To some extent, these actions take 

an object-oriented approach by deferring the details of what is measured until runtime and instead only 

specifying a performance measurement framework that isn’t fully instantiated until coupled with a specific 

configuration. 

In addition, the redesign standardized on the XML format as the common representation for both input and 

output of the libraries and tools, and XML applications were created in support. The functionality and 

flexibility that this enables is demonstrated in later sections.    

libperfsuite 

Despite the fact that hardware-based performance data access is central to PerfSuite software, it is 

still the case that there are a number of useful pieces of information and measurements interesting 

to the performance analyst that are independent of performance counters.  Examples include 

access to accurate, high-resolution timers, information about architectural features such as details 

of the memory hierarchy, and resource usage information such as CPU time consumed or the 

resident set size of a running application.  Several of these measurements are either not available 

or not implemented in versions of the Linux kernel or supporting libraries.  For example, many 

developers are often surprised that the system call getrusage() , as available in standard Linux 

distributions, does not return meaningful values for memory usage. libperfsuite provides access to 

this type of information that can be retrieved directly by user programs and is also used by tools 

such as psrun (described below).  libperfsuite is a standalone library that is fully functional on any 

supported platform, regardless of the presence of other support libraries
2
. 

                                                           
2
 It is assumed that the GNU C library is available. 

libperfsuite libpshwpc 

PAPI Perfmon 

PSTcl 

psprocess psrun 

tDOM glibc 

Figure 1.  PerfSuite architecture. 
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libpshwpc 

As in the earlier prototype for library-accessible control of performance monitoring, a primary 

focus of the current version of PerfSuite is hardware performance event data.  This is the role of 

libpshwpc (the library’s name stands for PerfSuite HardWare Performance Counters).  The library 

exposes to the user and to PerfSuite tools the following small set of functions: 

 

• int ps_hwpc_init(void)   initialize library 

• int ps_hwpc_start(void)    start measurement 

• int ps_hwpc_suspend(void)  pause measurement 

• int ps_hwpc_read(ps_hwpc_value_t *values)     

     return current performance data 

• int ps_hwpc_stop(char *filename)      

     stop measurement and write XML data 

• int ps_hwpc_shutdown(void)  end use of library 

• int ps_hwpc_numevents(int *numevents)     

     return current number of counters used 

• int ps_hwpc_eventnames(char ***eventnames)    

     return current event names 

• int ps_hwpc_psrun(void)   start psrun-like collection 

 

The above prototypes are callable from C-based languages and return a code indicating the 

success or failure of the call. Fortran subroutine versions are implemented that include an 

additional argument (the conventional “ierr” return status code). 

 

It may be apparent on examination of the libpshwpc API that there are no parameters passed to 

the routines indicating anything specific about the performance experiment to be performed.  

Instead, this information is deferred until runtime and is determined through a configuration file 

that is provided as an XML document. 

 

Extensions to libpshwpc also add support for gathering profiling data using statistical sampling 

techniques.  Sampling can be done in a number of different ways: 

 

1. Through the standard profil()  subroutine available in the GNU C library.  This is the 

same technique used by the gprof tool and compilers that support generation of gprof-

compatible data.  The sampling strategy involves employing interval timers to deliver 

SIGPROF interrupts to the application at fixed intervals (10ms on x86 systems, 1ms on 

IA-64 platforms). Unlike gprof however, libpshwpc also supports the sampling of shared 

library data. 

2. Through direct use of the setitimer()  system call, with interrupt handlers installed 

by PerfSuite.  This technique provides a superset of the functionality provided by 

profil()  in two ways:  the user can select alternate time domains in addition to 

ITIMER_PROF, which is decremented when the process is executing in both user and 

system mode.  The two alternate domains are ITIMER_VIRTUAL (decremented when 

executing in user mode only) and ITIMER_REAL (decremented in real time, regardless 

of the execution mode of the process).  The ITIMER_REAL option in particular can 

provide a substantially different viewpoint of execution over the lifetime of an 

application as it may include samples collected at times that the process was waiting for 

events such as I/O activity or message-passing to be completed. 

3. By hardware event-based support, which represents a generalization of the time-based 

techniques above.  The performance counters on all current general-purpose processors 

that Linux supports provide an option to generate an interrupt after a specified number of 
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occurrences of one or more hardware events, which is handled in much the same manner 

as traditional interrupts on timer expiration.  The value of this type of profiling lies in the 

ability to obtain profiles that pinpoint the locations within the application where the most 

occurrences of events of interest, including cache misses, processor stalls, floating point 

operations/assists, vector operations, and so on. 

 

A final extension to the prototype implementation of libpshwpc is the ability, through the 

ps_hwpc_suspend()  and ps_hwpc_start()  functions, to pause and restart performance 

measurement (whether counting or profiling) in order to isolate one or more regions of an 

application. 

 

psrun 

psrun is a command-line utility that enables performance measurement of unmodified dynamically 

linked applications.  From the user perspective, it is probably the most visible and frequently used 

component of PerfSuite.  psrun combines the functionality available through libperfsuite and 

libpshwpc with operating system support for runtime loading of shared libraries to perform its 

work.  Conceptually, psrun is straightforward; when invoked to measure the user’s application 

(e.g., psrun a.out ), the following occurs: 

 

1. The command line supplied by the user is parsed by the psrun program, which also 

verifies any options specified and identifies the executable to be measured.  Options that 

tailor the performance measurement for individual runs are communicated to libpshwpc 

through environment variables; in most cases, UNIX-style command line flags (e.g., -o 
outputprefix ) are translated by psrun to their equivalent environment variable 

setting. Alternatively, the user can choose to set the appropriate environment variable 

directly, avoiding the need to use psrun command-line options. 

2. A “helper” shared library - libpsrun - is added to the environment by psrun, specified 

through the LD_PRELOAD environment variable. On Linux systems, LD_PRELOAD 

can be used to cause one or more shared libraries to be loaded before all others
3
. The 

LD_PRELOAD technique is commonly used to selectively override one or more 

functions contained in standard shared libraries (for example, one might wish to trap calls 

to the malloc()  memory allocator to assist in tracking or debugging memory usage or 

locating memory leaks). There are two variants of libpsrun available; the proper version 

is chosen based on whether the program to be measured is single- or multi-threaded.  To 

accommodate multithreaded applications, libpsrun includes a function that overrides 

pthread_create()  in order to allow measurement of the performance of individual 

threads. 

3. psrun creates a new process and spawns the user’s requested executable via a 

fork()/exec()  pair. Optionally, a “monitor thread” may also be created on user 

request; this thread has the responsibility of periodically querying resource usage of the 

newly created process as well as monitoring other runtime factors that may affect 

performance such as the system load average. 

4. The user’s process begins execution with libpsrun loaded (due to the prior setting of 

LD_PRELOAD). libpsrun contains a distinguished constructor function that is called 

automatically before the user’s program enters its main()  routine
4
. The constructor 

function has the responsibility of loading libpshwpc into the user’s process and starting 

performance measurement by calling ps_hwpc_init()  and ps_hwpc_start() . 

                                                           
3
 Functionality similar to LD_PRELOAD is often available on other operating systems and libraries, 

possibly through a different name or mechanism.  For example, on IRIX platforms, the variable 

_RLD_LIST or several variants may be used. 
4
 The current implementation of libpsrun uses “function attributes”, recognized by the GNU gcc compiler. 

Alternate approaches are possible, such as the use of the distinguished library entry point _init() . 
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The constructor also arranges for performance data to be written out before the user’s 

process exits by registering ps_hwpc_stop()  as an “exit handler” that is called 

automatically when the user’s process exits normally
5
. 

5. Lastly, psrun waits for the user’s process to terminate using the wait4()  system call.  If 

resource monitoring has been requested, psrun issues a cancellation request to the 

monitor thread, causing it to write out the resource data collected prior to honoring the 

cancellation. 

 

It is important to note that, with the exception of resource data collection by the monitor thread, 

psrun neither collects nor writes any data from the performance measurement. Instead, this is 

performed by individual threads within a process through preloaded shared libraries described 

above. 

 

psprocess 

The output of libpshwpc, whether generated by an application incorporating direct calls to the 

library or through psrun, is an XML document containing the raw performance data collected in 

addition to information describing machine characteristics. While this information can be useful 

by itself and is human-readable due to the textual nature of XML data, in most cases it does not 

present the data in a form that is immediately useful to the average developer or performance 

analyst.  Instead, humans tend to prefer data that is expressed in a normalized form that lends itself 

to comparative use.  For example, rather than learning that a key computational kernel executed 

86,124,489,172 floating point operations in 594,547,754,568 cycles on a system clocked at 800 

MHz, it is much more straightforward to grasp that the kernel executed at a rate of approximately 

116 million floating point operations per second (MFLOPS). This type of statistic is often referred 

to as a “derived metric” that can be calculated using raw measurements, possibly combined with 

information about the machine characteristics (such as the clock speed in this example). Given the 

wide variety of hardware performance events that are tracked by current microprocessors, the 

number of possible metrics that can be derived from arbitrary measurements is potentially 

staggering; however, in many cases only a few metrics are of interest for a particular combination 

of hardware, software, algorithm, and data.  Still, it is desirable to maintain as much flexibility as 

possible in terms of what metrics are possible and supported.  

 

A similar need arises in the case of statistical profiling of applications.  At the lowest level, 

sampling strategies simply record the value of the system’s program counter at regular intervals. 

This value is literally a specific numeric address within the text space of the machine instructions.  

Clearly, learning that the majority of profiling samples collected during a particular experiment 

correspond to, e.g., address 0x4001ce70 is not of great use to developers, who instead think in 

terms of source code lines, functions, and files.  However, machine addresses are exactly what is 

collected by sampling and therefore are what is deposited in the XML documents written by 

libpshwpc, so that a subsequent mapping of addresses to program locations is necessary to be 

useful. 

 

Transformation of raw data collected and written by libpshwpc into human-comprehensible form 

is one of the primary tasks performed by the tool psprocess.  In terms of the complexity of the 

work performed by various components of PerfSuite, psprocess and software packages that it uses 

are by far the most complex.  However, psprocess is also surprisingly compact and manageable, 

with the current version written in approximately 2,000 lines of code. This is certainly due to the 

choice of a high-level scripting language (the implementation language of psprocess is Tcl). 

psprocess relies on core Tcl features and in addition makes extensive use of the tDOM XML 

package and Tcl-based interfaces to hardware performance counter libraries that were developed 

as part of PerfSuite, primarily for this purpose.  

                                                           
5
 One of onexit() , atexit() , or a gcc destructor is used to register the process exit handler.  
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Examples of the use of psprocess include: 

 

• Summarizing single-processor aggregate performance event data and calculating derived 

metrics (standard or user-defined) from the raw event counts 

• Producing understandable reports from statistical profiling sample counts, using a Tcl 

extension that is part of PerfSuite for mapping program text addresses to source code 

lines, functions, and files 

• Combining individual performance measurements into “multi-reports”, representing a 

logical collection of measurements (as might be generated, for example, by a run of a 

parallel program), and further processing these multi-reports to display appropriate 

descriptive statistics for the collection such as mean, maximum, minimum, variance 

• Translating data collected by PerfSuite to formats specific for external tools such as 

gprof or VProf [15] 

• Using a prior counting run to estimate a reasonable sampling period for a subsequent 

profiling experiment with a particular application (referred to as calibration) 

• Retrieving PerfSuite-generated XML data over the Internet via the HTTP protocol and 

post-processing it locally (HTTP support is well-integrated with the standard Tcl 

distribution) 

 

psprocess adapts its behavior according to the type of XML document supplied as well as to 

options supplied by the user. For common cases, the user needs only to invoke psprocess, 

supplying the name of the input XML document, and psprocess will “do the right thing”.  This 

“natural” mode of use has a substantial benefit in reduction of time required to learn to use psrun 

and psprocess to obtain useful performance information. 

psinv 

Users of HPC systems, especially those conducting performance analysis work, often find it 

helpful or necessary to determine machine characteristics such as CPU type, architectural details 

such as cache line sizes, installed memory, available hardware performance events, and so on. 

There is currently no UNIX “standard” command that provides this type of information, although 

there have been a number of useful utilities developed from time to time, such as sysinfo or hinv. 

These types of programs provide helpful high-level expectations for application performance on a 

given system, especially within environments where multiple systems are available.  Additionally, 

low-level optimization strategies that tailor software behavior for particular machine 

characteristics (e.g., cache line size) can benefit from having this information readily accessible. 

psinv is a small utility that exposes this type of information for easy access.  It relies on 

libperfsuite and any installed supporting libraries and provides a quick inventory of performance-

related aspects of the system.    

Examples of Use 

Basic Event Counting 

 

The libraries and tools described in the prior section provide a foundation for routinely obtaining 

performance measurements of unmodified applications, either through user-directed experiments or by an 

automated process that can be tailored as required to meet the needs of a specific site. In either usage 

model, the underlying mechanisms are identical. The particular measurements to be collected are contained 

in an XML configuration file that is specified through either a command-line option to psrun or through the 

environment.  If no configuration file is supplied, then a default configuration is used that collects 

aggregate event counts over the course of the application run. This mode of operation is equivalent to the 

IRIX perfex command. The user invokes psrun directly on the executable and arguments supplied: 

% psrun myprogram 
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If the application terminates normally, then the output of psrun is written to an XML document contained 

in a disk file; the document name conforms to a standard template that includes the name of the executable, 

the process ID, and the hostname of the computer on which the program ran
6
. 

Figure 2 shows an example of the type of output collected by psrun in counting mode, when post-processed 

with psprocess. This example has been considerably abbreviated and shows only a portion of the machine 

information displayed, the performance events that are collected, and the derived metrics that are calculated 

by PerfSuite. 

Multithreaded Applications 

 

The procedure for using PerfSuite with multithreaded applications is nearly the same -- the only difference 

is in the inclusion of a command-line flag “-p” that requests tracking of individual POSIX threads: 

% psrun -p threadedprogram 
 

 In the threaded case, the naming template for the XML output documents include an additional 

component: a unique thread ID (generated internally by libpshwpc). 

Although historically, Linux systems have tended to be single-CPU workstation-class systems, a great deal 

of progress has been made over the past several years to support symmetric multiprocessor (SMP) 

platforms. With improvements to key areas such as the scheduler and POSIX thread support, current 

systems such as the SGI Altix have demonstrated successful scaling to hundreds of processors. Application 

developers remain keen to take advantage of the potential improvements through shared-memory (thread-

based) parallelism, and the standard in SMP parallel programming models is the OpenMP standard [18]. A 

majority of the currently-available commercial and open source compilers that support OpenMP rely on the 

POSIX thread library for thread management, with the result that the thread support contained in PerfSuite 

maps well to OpenMP-based applications. It is important to note, however, that there is no “awareness” of 

OpenMP constructs within PerfSuite; this implies that to a great extent tools like psrun are at the mercy of 

the thread management of the runtime libraries. If the OpenMP implementation chooses to reuse existing 

threads in ways that do not directly correspond to the application’s expression of parallelism, this will be 

reflected in the resulting XML output. 

Profiling 

 

By supplying a non-default configuration file, the user can request that statistical profiling is used in the 

performance experiment. In this case, only a single measurement is currently supported (either a specific 

hardware event or one of the other time-based sampling techniques discussed earlier). Figure 3 shows an 

example of the type of output that can be obtained using this measurement technique. Although 

abbreviated, the example contains representative output; in particular, it shows that the current 

implementation is restricted to “flat” profiles that simply record the frequency of samples attributed to each 

sampled address.  No contextual information is gathered that allows the generation of call graph (or call 

tree) displays. In practice, we find that flat profiles provide the first level of information usually of interest 

to developers and performance analysts, however it may be useful to examine flat profiles in conjunction 

with call graph data generated using other available means to obtain the most complete profiling view. 

Custom Configuration Files 

 

Figure 4 shows an example of a custom configuration file that can be used for aggregate counting using 

direct access to the Perfmon subsystem on IA-64 platforms.  This example demonstrates how one might go 

                                                           
6
 Early versions of PerfSuite did not include the hostname.  It was quickly discovered that clashes of 

process IDs in a clustered environment would cause performance data to be overwritten, so the hostname 

was included to avoid this loss of data.  



PerfSuite: An Accessible, Open Source Performance Analysis Environment for Linux 

 

 

 

 

 

 

 

12

about counting useful graduated instructions per cycle on this processor.  Due to the nature of the EPIC 

architecture, the compiler can generate a substantial number of nop  instructions in order to fill out 

available slots for which no other instruction could be scheduled.  The IA-64 PMU includes these 

instructions along with other (presumably “useful” instructions) in the final event counts.  Therefore, if one 

calculates a metric such as CPI (cycles per instruction) with no-ops included, the result may appear 

inflated.  This PerfSuite configuration file requests both total IA-64 retired instructions and retired no-ops; 

the difference represents the number of retired instructions spent performing useful work.  This type of 

measurement is not currently supported when restricted to PAPI standard events, for which no-ops are not 

defined, so it is convenient to drop to the native processor events for finer control (note that PAPI does 

support processor native events; this example only refers to the collection of PAPI standard events). 

User-Defined Metrics 

 

Figure 5 shows an example of defining a derived metric that can be used by psprocess when post-

processing counting data. Definitions such as these may be grouped into an XML document and provided 

via the command line when issuing the psprocess command. The syntax used is reminiscent of the 

MathML XML standard, although not strictly compliant.  PerfSuite supports simple arithmetic 

combinations of hardware event counts that are evaluated by psprocess at runtime, using the supplied event 

data.  This example also shows the use of metric “descriptions”, which support internationalization through 

Tcl. 

Interoperability with External Tools 

  

In PerfSuite development efforts to date, little or no attention has been paid to graphical display of 

performance data gathered by the libraries and tools, both by design and by necessity.  As mentioned early 

in this document, the primary motivating factor for development of PerfSuite under Linux was to replace 

functionality lost while transitioning from single-vendor HPC solutions to systems based on commodity 

microprocessors and open source software.  It is clear that development of a comprehensive set of tools for 

performance measurement, analysis, and visualization is an effort that can potentially consume substantial 

resources and is well beyond the scope of  PerfSuite development to date.  This is, in itself, sufficient 

reason to continue to restrict development to core data gathering and basic text-based display. 

Another reason to restrict development is subtler: development of graphical techniques for information 

visualization is a complex and active field of research in its own right. One of the tradeoffs that are often 

encountered when using non-generic graphical tools tailored to a specific domain is that the developers, 

who produce the tools, by necessity, make a number of choices for you. Although the display techniques 

may be state-of-the-art and extremely innovative, in many cases the user of the tool has limited control over 

the nature of the visualizations produced. 

In order to avoid being “trapped” by unwise, ill-designed, or unmaintainable decisions regarding graphical 

display, the focus centers instead on careful design of extensible data containers that lend themselves to 

transformations that are acceptable to existing display technologies.  The choice of XML as the standard 

container for PerfSuite-generated performance data has paid repeated dividends in this regard. XML 

technologies such as Extensible Stylesheet Language Transformations (XSLT) and the ready availability of 

high-quality XML parsers greatly simplify the task of transforming PerfSuite’s raw XML documents into 

formats that are usable by existing tools. 

Figure 6 shows two examples of useful tools that may provide insight into performance data collected by 

psrun and filtered by psprocess. The upper display is generated by a tool for exploratory data analysis 

called Attribute Explorer, a joint development effort by researchers at Imperial College and IBM [17]. 

Shown side-by-side is performance data gathered from two runs of a parallel (MPI-based) application. Each 

“box” in the main window displays a collection of performance metrics as calculated by psprocess. Within 

each box, data points corresponding to each metric are discretized (binned) and displayed on a per-

processor basis within smaller “cells” positioned within the box and plotted as column-oriented histograms.  
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Further, the coloring of each cell indicates which run is the source of the measurement. For the experiment 

shown, the only difference between runs was the number of processors active and taking part in the 

calculation within each SMP node of a Linux cluster (alternatively stated, the graphic compares 

performance data captured for both 1-processor-per-node and 2-processors-per-node runs of an identical 

application). The value of this type of display is the potential to easily distinguish patterns contained within 

a relatively large number of observations (over 1000 data points are displayed simultaneously in the 

figure). Patterns of interest might include those for which there is a clear visual separation between 

individual runs, indicative of generally distinct performance characteristics. Conversely, boxes in which 

colors are uniformly distributed across the range of measurements are likely to correspond to metrics that 

do not distinguish between multiple experiments (runs). This type of display can also be valuable a wide 

range of comparative studies, such as multiple applications, or different system software or hardware 

configurations. 

The lower display in Figure 6 shows a more traditional source-code browsing capability: it was generated 

by the vprof tool developed at Sandia National Laboratories. vprof is part of a larger, open source, package 

for performance data collection and visualization that predates and has several features in common with 

PerfSuite. The vprof tool was one of the earliest Linux-based performance tools to see general use at NCSA 

and continues to enjoy popularity, owing to its ease of use and flexible presentation styles (text-based, 

HTML, and graphical interfaces are available). The display in Figure 6 shows data that was collected by 

PerfSuite visualized by vprof. Although the vprof 0.l2 format cannot handle the full range of profiling data 

that can be collected by PerfSuite (in particular, profiling data from shared libraries is not supported), it is 

still quite useful and convenient as an easy method of reviewing profiling data correlated to the source 

code. The interoperability of PerfSuite and vprof was achieved by adding a module to psprocess that 

translates PerfSuite-generated profiling data into the vprof binary equivalent. The module is quite compact, 

requiring only about 100 lines of Tcl to perform the translation. A similar capability has also been 

implemented in psprocess to generate the “gmon.out” format understood by the GNU gprof profiling 

utility.  Both vprof and gprof support are included in the standard PerfSuite distribution. 

Generation of Custom, On-Demand  Displays 

Another factor that influences the decision to emphasize core data collection facilities over extensive GUI 

development is the rapid pace of advancement of libraries for graphical display. It is no longer the case that 

in-depth knowledge of the inner workings of earlier libraries such as Motif is prerequisite to GUI 

development. Indeed, the scripting languages of today (not only on UNIX-based systems, but also 

Windows) provide ample support for quickly producing “one-off” displays with very little effort. While 

this type of RAD development will not result in polished, commercial-quality, general-purpose tools, it 

could be argued that day-to-day use of performance data may only infrequently require extensive graphical 

investigation. 

Figure 7 shows an example of this type of rapid-development display, showing a Tcl/Tk script that can be 

used to generate bar and pie charts using an open source pure Tcl package called Plotchart and the tDOM 

Tcl XML extension. Using fewer than 20 statements, the script can plot rudimentary but serviceable charts 

that can be useful to developers involved in optimization and performance analysis on a daily basis. 

Anyone who has worked in an iterative mode, perhaps adjusting compiler flags or inserting directives, 

recompiling, rerunning and checking performance at each step will likely appreciate the value of this mode 

of operation, which can be entirely sufficient for “quick and dirty” performance tuning sessions. 

Although Tcl/Tk and associated support packages are used in the example, it’s likely that similar 

functionality may be found within the communities associated with each of the popular interpreted 

languages available today.  By combining the rapid development offered within these languages with 

convenient performance data generation as available in PerfSuite, the ultimate goal of easy-to-use, robust, 

scalable, and comprehensible support for performance analysis will soon be commonplace, not only within 

the HPC world, but across the spectrum of development efforts targeted to open source based platforms. 
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PerfSuite Hardware Performance Summary Report 
 
Version      : 1.0 
Created      : Mon Dec 30 11:31:53 AM Central Stand ard Time 2002 
Generator    : psprocess 0.5 
XML Source   : /u/ncsa/anyuser/performance/psrun-ia 64.xml 
 
Processor and System Information 
=================================================== =========================================  
Node CPUs    : 2 
Vendor       : Intel 
Family       : IPF 
Model        : Itanium 
CPU Revision : 6 
Clock (MHz)  : 800.136 
Memory (MB)  : 2007.16 
Pagesize (KB): 16 
 

Cache Information 
=================================================== =========================================  
Cache levels : 3 
-------------------------------- 
Level 1 
Type         : data 
Size (KB)    : 16 
Linesize (B) : 32 
Assoc        : 4-way set associative 
Type         : instruction 
Size (KB)    : 16 
Linesize (B) : 32 
Assoc        : 4-way set associative 
 
Index Description                                                              Counter Value  
=================================================== =========================================  
    1 Conditional branch instructions mispredicted. ....................           4831072449  
    2 Conditional branch instructions correctly pre dicted..............          52023705122  
    3 Conditional branch instructions taken........ ....................          47366258159  
    4 Floating point instructions.................. ....................          86124489172  
    5 Total cycles................................. ....................         594547754568  
    6 Instructions completed....................... ....................        1049339828741  
 
Statistics 
=================================================== =========================================  
Graduated instructions per cycle................... ....................                1.765  
Graduated floating point instructions per cycle.... ....................                0.145  
% graduated floating point instructions of all grad uated instructions..                8.207  
Graduated loads/stores per cycle................... ....................                0.219  
Graduated loads/stores per graduated floating point  instruction........                1.514  
Mispredicted branches per correctly predicted branc h...................                0.093  
Level 3 cache line reuse (data).................... ....................                2.498  
Bandwidth used to level 3 cache (MB/s)............. ....................              385.087  
% cycles with no instruction issue................. ....................               10.410  
% cycles stalled on memory access.................. ....................               43.139  
MFLOPS (cycles).................................... ....................              115.905  
MFLOPS (wallclock)................................. ....................              114.441  
MIPS (cycles)...................................... ....................             1412.190  
MIPS (wallclock)................................... ....................             1394.349  
CPU time (seconds)................................. ....................              743.058  
Wall clock time (seconds).......................... ....................              752.566  
% CPU utilization.................................. ....................               98.737  
 

Figure 2. Example PerfSuite output (counting run) 
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Figure 5. Example derived metric definition 

 

Profile Information 
=================================================== ========================================= 
Class        : PAPI 
Event        : PAPI_TOT_CYC 
Threshold    : 1000000 
Samples      : 5254005 
Domain       : user 
Run Time     : 6872.56 (wall clock seconds) 
Min Self %   : (all) 
 
File Summary 
--------------------------------------------------- ----------------------------- 
  Samples   Self %  Total %  File 
 
  2538551   48.32%   48.32%  /home/perfsuite/apps/g romacs/gromacs-3.1.4/src/gmxlib/innerf.f 
   865132   16.47%   64.78%  /home/perfsuite/apps/g romacs/gromacs-3.1.4/src/mdlib/pme.c 
   850101   16.18%   80.96%  /home/perfsuite/apps/g romacs/gromacs-3.1.4/src/mdlib/ns.c 
 
Function Summary 
--------------------------------------------------- ----------------------------- 
  Samples   Self %  Total %  Function 
 
  1839543   35.01%   35.01%  inl3130 
   541829   10.31%   45.32%  ns5_core 
   389741    7.42%   52.74%  inl0100 
 
File:Line Summary 
--------------------------------------------------- ----------------------------- 
  Samples   Self %  Total %  File:Line 
 
   232686    4.43%   10.70%  /home/perfsuite/apps/g romacs/gromacs-3.1.4/src/mdlib/pme.c:269 
   174262    3.32%   14.01%  /home/perfsuite/apps/g romacs/gromacs-3.1.4/src/mdlib/ns.c:1274 
    99352    1.89%   15.91%  /home/perfsuite/apps/g romacs/gromacs-3.1.4/src/mdlib/ns.c:1490 

 

<ps_hwpc_eventlist class="perfmon"> 
  <ps_hwpc_event type="preset">IA64_INST_RETIRED_TH IS</ps_hwpc_event> 
  <ps_hwpc_event type="preset">NOPS_RETIRED</ps_hwp c_event> 
  <ps_hwpc_event type="preset">CPU_CYCLES</ps_hwpc_ event> 
</ps_hwpc_eventlist>  

<psmetrics class="hwpc"> 
    <metric namespace="PAPI" type="ratio"> 
        <name>PS_RATIO_GFPINS_CYC</name> 
        <description lang="en_US">Graduated floatin g point instructions per cycle</description> 
        <definition> 
            <apply> 
                <divide> 
                    <ci>PAPI_FP_INS</ci> 
                    <ci>PAPI_TOT_CYC</ci> 
                </divide> 
            </apply> 
        </definition> 
    </metric> 
</psmetrics>  

Figure 3. Example PerfSuite output (profiling run) 

Figure 4. Example XML configuration document (counting) 
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Figure 6. Two examples of display techniques of external tools using PerfSuite-generated data. 

The upper display is produced by Attribute Explorer; the lower display by VProf. 
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# Acquire the total number of samples during the run. 
set totalsamples [[$xmldoc getElementsByTagName totalsamples] text] 
set other        0 
 
# Collect samples on a function-by-function basis. 
foreach element [$xmldoc getElementsByTagName function] { 
    set fname [$element getAttribute name] 
    set count 0 
    # Accumulate samples attributed to this function. 
    foreach sample [$element childNodes] { 
        incr count [$sample text] 
    } 
    # Restrict display to no more than ten functions, and only 
    # those containing greater than five percent of all samples. 
    # Place all other samples in “Other” category. 
    set pct [expr {round($count/double($totalsamples) * 100.0)}] 
    if { ($pct >= 5) && ([llength pcts] < 10) } { 
        lappend pcts $fname $pct 
    } else { 
        incr other $pct 
    } 
} 
 
# Incorporate “other” samples and plot the results. 
lappend pcts "Other" $other 
canvas .c -bg white 
 
# The following two lines determine the chart type, here a pie chart. 
set chart [Plotchart::createPiechart .c] 
$chart plot $pcts 
$chart title [file tail $filename] 
 
pack .c  
 

 

Figure 7. Example plotting script and generated displays 
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